Cyanobacterial construction of hot spring siliceous stromatolites in Yellowstone National Park.
نویسندگان
چکیده
Living stromatolites growing in a hot spring in Yellowstone National Park are composed of silica-encrusted cyanobacterial mats. Two cyanobacterial mat types grow on the stromatolite surfaces and are preserved as two distinct lithofacies. One mat is present when the stromatolites are submerged or at the water-atmosphere interface and the other when stromatolites protrude from the hot spring. The lithofacies created by the encrustation of submerged mats constitutes the bulk of the stromatolites, is comprised of silica-encrusted filaments, and is distinctly laminated. To better understand the cyanobacterial membership and community structure differences between the mats, we collected mat samples from each type. Molecular methods revealed that submerged mat cyanobacteria were predominantly one novel phylotype while the exposed mats were predominantly heterocystous phylotypes (Chlorogloeopsis HTF and Fischerella). The cyanobacterium dominating the submerged mat type does not belong in any of the subphylum groups of cyanobacteria recognized by the Ribosomal Database Project and has also been found in association with travertine stromatolites in a Southwest Japan hot spring. Cyanobacterial membership profiles indicate that the heterocystous phylotypes are 'rare biosphere' members of the submerged mats. The heterocystous phylotypes likely emerge when the water level of the hot spring drops. Environmental pressures tied to water level such as sulfide exposure and possibly oxygen tension may inhibit the heterocystous types in submerged mats. These living stromatolites are finely laminated and therefore, in texture, may better represent similarly laminated ancient forms compared with more coarsely laminated living marine examples.
منابع مشابه
Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation.
Stromatolites are commonly interpreted as evidence of ancient microbial life, yet stromatolite morphogenesis is poorly understood. We apply radiometric tracer and dating techniques, molecular analyses and growth experiments to investigate siliceous stromatolite morphogenesis in Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park. We examine rates of stromatolite growth and the ...
متن کاملImpact of carbon metabolism on 13C signatures of cyanobacteria and green non-sulfur-like bacteria inhabiting a microbial mat from an alkaline siliceous hot spring in Yellowstone National Park (USA).
Alkaline siliceous hot spring microbial mats in Yellowstone National Park are composed of two dominant phototropic groups, cyanobacteria and green non-sulfur-like bacteria (GNSLB). While cyanobacteria are thought to cross-feed low-molecular-weight organic compounds to support photoheterotrophic metabolism in GNSLB, it is unclear how this could lead to the heavier stable carbon isotopic signatur...
متن کاملMolecular diversity of cyanobacteria inhabiting coniform structures and surrounding mat in a Yellowstone hot spring.
Lithified coniform structures are common within cyanobacterial mats in Yellowstone National Park hot springs. It is unknown whether these structures and the mats from which they develop are inhabited by the same cyanobacterial populations. Denaturing gradient gel electrophoresis and sequencing and phylogenetic analysis of 16S rDNA was used to determine whether (1) three different morphological ...
متن کاملCyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as species-like units linking microbial community composition, structure and function.
We have investigated microbial mats of alkaline siliceous hot springs in Yellowstone National Park as natural model communities to learn how microbial populations group into species-like fundamental units. Here, we bring together empirical patterns of the distribution of molecular variation in predominant mat cyanobacterial populations, theory-based modelling of how to demarcate phylogenetic cl...
متن کاملCyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as species-like units linking microbial community composition, structure and function Published online
We have investigated microbial mats of alkaline siliceous hot springs in Yellowstone National Park as natural model communities to learn how microbial populations group into species-like fundamental units. Here, we bring together empirical patterns of the distribution of molecular variation in predominant mat cyanobacterial populations, theory-based modelling of how to demarcate phylogenetic cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental microbiology
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2012